Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli.

نویسندگان

  • G R Jiang
  • S Nikolova
  • D P Clark
چکیده

The fermentative lactate dehydrogenase (LDH) of Escherichia coli is induced by low pH under anaerobic conditions. Both translational and transcriptional gene fusions to ldhA, which encodes the fermentative LDH, have now been made. Both types of ldhA-lacZ fusion were induced by low pH, but only in the absence of air. However, the translational fusions were consistently expressed at a five- to tenfold higher level than the transcriptional fusions, perhaps implying some post-transcriptional effect on ldhA expression. Introduction of arcB::Kan decreased expression of both translational and transcriptional ldhA-lacZ fusions by three- to fivefold. Disruption of mlc, which encodes a repressor of several genes of the phosphotransferase system, almost abolished expression of ldhA. Disruption of csrA caused a moderate drop in expression of both operon and protein ldhA fusions, whereas insertional inactivation of csrB or glgA had the opposite effect. These effects are probably indirect, resulting from alterations in sugar accumulation versus storage. Mutations in ptsG, cra, fnr, narL, rpoS, osmZ, appY, ack/pta, aceEF, pfl and ldhA had no effect on expression of the ldhA fusions. ldhA was not induced by the membrane-permeant weak acid benzoate, implying that it does not respond to the internal pH directly. Little pH induction was seen during growth on glycerol plus fumarate, suggesting that products of sugar fermentation are necessary for acid induction. Addition of succinate, acetate or lactate had no effect on ldhA expression. In contrast, pyruvate caused a two- to fourfold increase in expression of ldhA-lacZ. This accords with the idea that increased sugar metabolism indirectly induces ldhA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus.

The diarrheal potential of a Bacillus cereus strain is essentially dictated by the amount of secreted nonhemolytic enterotoxin (Nhe). Expression of genes encoding Nhe is regulated by several factors, including the metabolic state of the cells. To identify metabolic sensors that could promote communication between central metabolism and nhe expression, we compared four strains of the B. cereus g...

متن کامل

Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae.

Rhizopus oryzae is used for industrial production of lactic acid, yet little is known about the genetics of this fungus. In this study I cloned two genes, ldhA and ldhB, which code for NAD(+)-dependent L-lactate dehydrogenases (LDH) (EC 1.1.1.27), from a lactic acid-producing strain of R. oryzae. These genes are similar to each other and exhibit more than 90% nucleotide sequence identity and th...

متن کامل

Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion.

Under anaerobic conditions, competition for pyruvate between the branch point enzymes pyruvate formate lyase (PFL, Km = 2 mM) and fermentative lactate dehydrogenase (LDH, Km = 7.2 mM) determines the partition of carbon flux. Two Escherichia coli mutant strains, one deficient in ackA, pta, and ldhA and the other overexpressing LDH, were constructed to systematically analyze the effects of these ...

متن کامل

The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR.

Corynebacterium glutamicum ldhA encodes L-lactate dehydrogenase, a key enzyme that couples L-lactate production to reoxidation of NADH formed during glycolysis. We previously showed that in the absence of sugar, SugR binds to the ldhA promoter region, thereby repressing ldhA expression. In this study we show that LldR is another protein that binds to the ldhA promoter region, thus regulating ld...

متن کامل

Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides.

AIMS Analysis of the physiology and metabolism of Escherichia coli arcA and creC mutants expressing a bifunctional alcohol-acetaldehyde dehydrogenase from Leuconostoc mesenteroides growing on glycerol under oxygen-restricted conditions. The effect of an ldhA mutation and different growth medium modifications was also assessed. METHODS AND RESULTS Expression of adhE in E. coli CT1061 [arcA cre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 147 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2001